

Selective κ-Opioid Antagonists Related to Naltrindole. Effect of Side-Chain Spacer in the 5'-Amidinoalkyl Series

Andrew R. Jales, Stephen M. Husbands and John W. Lewis*

School of Chemistry, University of Bristol, Bristol BS8 1TS, UK

Received 8 June 2000; accepted 25 July 2000

Abstract—The study of κ-opioid receptor function in vivo has been hampered by the limited choice of selective κ-antagonists. Recently discovered κ-antagonists have not yet been utilised in vivo. We here report the synthesis and in vitro evaluation of a new amidine derivative of naltrindole. It showed substantially greater κ-selectivity in binding assays than known analogues with shorter spacer in the amidine side chain. This indicates that in nor-BNI and related selective κ-antagonists, the second basic centre may not be ideally located. © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

The effective study of receptor pharmacology requires the availability of a range of selective antagonists. In the opioid field there is only one commercially available selective κ-antagonist, nor-BNI (1). This dimer of naltrexone linked through a pyrrole spacer has been widely studied but when used in vivo it presents an undesirable pharmacokinetic profile with very slow onset and very long duration of action.¹ Though other selective κ -antagonists related to nor-BNI and naltrindole (NTI, 2) have been reported,^{2–4} their advantages over nor-BNI have not outweighed the relative inaccessibility so that they have not been used for in vivo studies. We aimed to synthesise derivatives of 5'-6'-pyrido-NTI (4) and for this required 5'-(2-aminoethyl)NTI (3) as a precursor. Since the amidine derivative (5a) had proved to have greater κ-antagonist selectivity than nor-BNI in smooth muscle preparations³ it was decided to use 3 as a source of the homologue (5b). We here report its synthesis and in vitro pharmacological evaluation. In the displacement binding assay, 5b was very much more selective for κ-opioid receptors than nor-BNI or 5a but this superiority was not confirmed in the [35S]GTPγS functional assay.

Synthesis

The synthetic route to **5b** is shown in Scheme 1. 4-Hydrazinobenzyl cyanide⁵ was used in the Fischer-indole synthesis with naltrexone (7) to give **8** which was reduced (RaNi/H₂) to the aminoethyl derivative (3). This was converted into the butyl amidine (**5b**) by reaction with ethyl pentanimidate hydrochloride.⁶ The product was isolated by preparative TLC on silica gel plates (eluant DCM:MeOH:NH₄OH, 84:15:1).

Pharmacology

The amidine (**5b**) and precursor amine (**3**) were evaluated in binding assays in chinese hamster ovary (CHO) cells transfected with cloned human receptors. The displaced radioligands were [3 H]-DAMGO (μ), [3 H]-Cl-DPDPE (δ) and [3 H]-U69593 (κ). The results are shown in Table 1. The new ligands displayed high affinity for κ -receptors and substantial selectivity. The primary amine (**3**) was less κ -selective than nor-BNI but the amidine was much more selective than either nor-BNI or the equivalent amidinomethyl derivative (**5a**).

Functional opioid activity was determined by stimulation of [35S]GTPγS in cloned human opioid receptors transfected into CHO cells (Table 2).^{7,8} Neither 3 nor **5b** stimulated [35S]GTPγS for any type of opioid receptor but were antagonists of selective agonists, DAMGO,

^{*}Corresponding author. Tel.: +44-117-928-9933; fax: +44-117-929-8611; e-mail: j.lewis@bristol.ac.uk

Scheme 1. (i) 4-Hydrazinobenzyl cyanide, HOAc, 1.5 h, 46%; (ii) RaNi/H₂, EtOH, NH₃, 4 h, 55%; (iii) CH₃(CH₂)₃C(NH)OCH₂CH₃·HCl, EtOH, N_2 , 48 h, 20%.

Cl-DPDPE and U69593 for μ -, δ - and κ -receptors respectively. The K_e value for 3 as a κ -receptor antagonist was an order of magnitude greater than its K_i in the binding assay and it was also more selective for the κ -receptor in the functional assay. The κ -antagonist potency of the amidine (5b) was equivalent to its κ -binding affinity but potency as a μ and δ antagonist was

5b

Table 1. Affinities in opioid receptor displacement binding assays

$K_{\rm i}~({ m nM})\pm{ m SEM}$					
Ligand	μ	δ	к	μ/κ	δ/κ
3 5b 5a ^a 1 (nor-BNI)	29.6±2.7 219.2±84.5 3.5 21.0±5.0	28.2±3.5 38.2±4.9 5.5 5.7±0.9	$\begin{array}{c} 1.08 \pm 0.5 \\ 0.30 \pm 0.2 \\ 0.061 \\ 0.2 \pm 0.05 \end{array}$	27 730 57 105	26 127 90 28

^aTaken from Ref. 3 in guinea pig brain membranes, confidence limits not given. All values are the average of two experiments each carried out in triplicate. Displaced ligands were [3H]DAMGO (µ), [3H]Cl-DPDPE (δ), [3 H]U69,593 (κ).

substantially higher than its binding affinity for these receptors, resulting in very much reduced κ -selectivity. For nor-BNI the K_e at the κ -receptor was approximately five-fold higher than its K_i in the binding assay and unlike amidine 5b its κ -selectivity was substantially greater in the functional assay than in the binding assay.

Discussion

In binding assays the new pentylamidine (5b) showed much higher κ -selectivity than nor-BNI and its close analogue (5a). This suggests that the second basic centre in nor-BNI and 5a is not optimally situated for κ -selectivity in application of the message-address principle. 9,10 However, the considerably lower κ -antagonist selectivity of **5b** in the $[^{35}S]GTP\gamma S$ assay together with the low yield in its synthesis suggests that a serious alternative to nor-BNI as the κ -antagonist of choice has still to be found.

Table 2. Opioid receptor antagonist activity in the [35S]GTPγS assay^a

Ligand	μ	δ	к	μ/κ	δ/κ
3	17.4±1.2	3.79±0.49	0.12±0.05	145	32
5b 1 (nor-BNI)	5.33 ± 0.63 18.9 ± 1.8	3.31 ± 0.54 4.42 ± 0.38	$0.17\pm0.05 \\ 0.039\pm0.004$	31 484	20 113

^aEach value represents the average of two experiments each carried out in triplicate. Standard agonists used were DAMGO (μ), Cl-DPDPE (δ), U69,593 (κ).

Acknowledgements

This work was supported by NIDA (OTDP, Division of Treatment Research & Development) Grants DA 00254 and DA 07315 and pharmacological evaluation carried out at SRI under NIDA contract NO1DA.

References and Notes

- 1. Butelman, E. R.; Negus, S. S.; Al, Y.; Decosta, B. R.; Woods, J. H. *J. Pharm. Exp. Ther.* **1993**, 267, 1269.
- 2. Lin, C.; Takemori, A. E.; Portoghese, P. S. J. Med. Chem. 1993, 36, 2412.
- 3. Olmstead, S. L.; Takemori, A. E.; Portoghese, P. S. *J. Med. Chem.* **1993**, *36*, 179.
- 4. Jones, R. M.; Hjorth, S. A.; Schwartz, T. W.; Portoghese, P. S. J. Med. Chem. 1998, 41, 4911.
- 5. Winchester, M. J.; Popp, F. D. J. Heterocycl. Chem. 1975, 83, 547.
- 6. Reynaud, P.; Moreau, R. C. Bull. Soc. Chim. Fr. 1964, 2997.
- 7. Toll, L.; Berzetei-Gurske, I. P.; Polgar, W. E.; Brandt, S. R.; Adapa, I. D.; Rodriguez, L.; Schwartz, R. W.; Haggart, D.; O'Brian, A.; White, A. *NIDA Research Monograph* **1997**, 178 440
- 8. Traynor, J. R.; Nahorski, S. R. Mol. Pharmacol. 1995, 47, 848.
- 9. Schwyzer, R. Ann. N.Y. Acad. Sci. 1977, 247, 3.
- 10. Portoghese, P. S.; Nagase, H.; Takemori, A. E. J. Med. Chem. 1988, 31, 1344.